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Abstract--This paper presents a simple theory for a non-Newtonian fluid, especially the comtational Jef- 
freys model. Particular attention is paid to the frequency spectrum of the strain fluctuations, and through lhis 
article it is found that the Jeffreys fluid will exhibit an "onset" Reynolds number, above which the effects of 
the non-Newtonian nature of this fluid are felt. Because time dependent behavior of the strain-strain correla- 
tion is emphasized, this study is complementary to the molecular theory. 

INTRODUCTION 

There has been a great resurgence of interest in the 
turbulence of non-Newtonian fluids. This is probably 
not only because many turbulent flow involve non- 
Newtonian liquids, such as slurries and vapor-liquid 
mixtures, but also because there exists a vast potential 
for energy savings through the exploitation of poly- 
mer-induced turbulent drag reduction [1]. It would be 
useful, therefore, to produce a simple analogy between 
a turbulence involving the Newtonian constitutive 
relation and one involving a physically realistic non- 
Newtonian relation. 

Much of what is understood about Newtonian tur- 
bulence has been gained by careful study of the kinetic 
energy lIKE) budget of the flow. This budget concerns 
itself primarily with accounting for processes that con- 
vey energy to the turbulence and processes by which 
that energy is transmitted and dissipated. For the KE 
budget of a normal Newtonian fluid, terms arising 
from the Navier-Stokes equation can be identified for 
each of these processes{2]. It would seem, then, that 
scmtini;,ing this KE budget might also be profitable 
with regard to a non-Newtonian turbulence. 

In what follows we will consider a corotational 
model of the non-Newtonian liquid[3]. We will be able 
to exploit the "finite energy of the eddies" maxim, and 
to some extent our own ignorance about the detailed 
statistic.,; of the flow, to come up with a KE budget ana- 
logy for this fluid. Since any constitutive relation is un- 
likely to affect the inertial properties of the fluid, it is 
not suprising that we find the major revision due to the 
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presence of the Jeffreys fluid in the dissipation portion 
of this budget. As a result, we will be able to make 
some conjectures about how the statistics of the turbul- 
ence may be affected by the "memory" involving char- 
acteristics of this fluid. None of these inferences are 
possible for the more realistic codeformational models 
however, and, in the conclusion, we will provide some 
speculation on the differences between the corota- 
tional (e.g. Jeffreys) and codeformational models. 

KINETIC ENERGY {KE) BUDGET EQUATION 

1. Newtonian f luid 
We will start by deriving the turbulent energy 

equations for a Newtonian fluid and then quickly de- 
rive its analogy, for a non-Newtonian fluid. The equa- 
tion for the mean energy in turbulence of Newtonian 
fluid is[4] : 

(1/2U, U , / =  
a t  

U, ~ax, ( - P u , p  ~ & U , S  ,, - U, < u , u , >  ) + 

- 2/l-S ~S ~+ S ,,,< u,uj > ,  (1) 
p 

where it is noted that repeated indices imply summa- 
tion (Einstein convention). This is obtained by taking 
the scalar product Uj (the mean velocity) into the aver- 
aged equation of motion with the underlined terms be- 
ing a direct result of the Newtonian constitutive 
assumption. Here, S,j represents the mean strain rate 
and P the average pressure. Lower case symbols in- 
dicate the fluctuating components: uj is the fluctuating 
velocity (< ,u />=  O) and,u is the viscosity of fluid. For 
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future reference, we also define p as the fluctuating 
pressure (< p > = 0), and s 0. as the fluctuating strain 
(< s,/> = 0). 

Now, if we take the scalar product (U/+ uj) into the 
(unaveraged) equation of motion and perform the 
averaging operation: 

2'9-Ot (1/2U, U, + 1 /2<u~u,>  ) + 1/2U,~xx]- (U,U, 

a 
4 < u , u , > ) 4 -  ~ ( < u , u , u , > + 2 < u , u , > U , )  

_ - 1 1  OP + - l a < u , p > +  2VrTaS~, 
p U~ox~ pc3x~ p ~ O x k  

2/, ~ Os,~ * . u ~ 7  > .  (2) 
p dx~ 

By subtracting off the mean energy [eq. (1)], we ob- 
tain the turbulent energy equation for the eddies: 

-~-Ot ( 1 / 2 < u , u , >  > +U,  ~ 7 ]  ( 1 / 2 < u , u , > )  = 

-- ~ (1/2<u~u,u~>q- < u ~ p >  2/l<u,s~,>) 
r p ,o 

- <u~u~,>S ~ -  2~<s ,~s~ > .  (3) 
P 

The last two terms are the most important, because 
they are the "source" and "sink" terms. See Hinze[2] 
for the detailed meaning of these terms. 
2.  N o n - N e w t o n i a n  f luid 

What we wish to do now is to generalize the deriva- 
tion for the Newtonian fluid with an arbitrary consti- 
tutive relationship. Let the total stress be given by: 

Total stress = [sotropic pressure + Deviatoric stress 

:= - ( P + p )  5 " + T +  r. (4) 

Here, P and T are the average pressure and deviatoric 
stress, whereas p and r are the fluctuating pressure 
and deviatoric stress, and 6 is a unit tensor. The devia- 
toric stress ~ + r )  is functionally related to the rate of 
strain tensor (S + s). This constitutive relationship is 
known as "rhe-01oglcal equation of states" (RES) and is 
available in standard texts (see, for example, Bird et 
al.)[3]. 

In this section, we will derive a general formulation 
suitable for any RES. Here, we shall draw l:he analogy 
between the non-Newtonian fluid and the Newtonian 
fluid to avoid any redundancy in our calculations. 
Then, the Newtonian viscous stress term in the equa- 

tion of motion is replaced with o ~ ! T ~ , +  r~z). In the 

mean energy equation, the underlined terms in eq.(1) 
are replaced by 

1 ~  (U~T~,) - 1 S  ~T~ .  
pox ,  

The underlined terms in eq.(2) are then replaced by 

1 0  ( U ~ T ~ , + < u ~ r k ~ > ) -  1 (S~,Tk,+<Sk, rk,>). 
pOx~ p 

After subtracting the new mean energy equation, we 
obtain: 

~t (1/2<u~u~>) + U j o - ~  (1/2<u~u~>) = 

0 (1 /2<u,u ,u~> + < u j p / p >  - <U~rk,>)  
c3xj 

- l / p <  r~r - < u ~ u j > S  ~. (5) 

Eq.(5) is t-he turbulent energy equation for the eddies, 
and it is applicable for any RES. For the Newtonian 
fluid, r = 2 ~ ,  eq.(5) reduces to eq.(3) as expected. The 
dissipation term, D ~ (rk, sk~ ) plays an important role in 
the study of turbulence, and will be studied in con- 
junction with the Jeffreys model, as an example, and it 
will be shown in (he next section. 

S T U D Y  O F  E N E R G Y  D I S S I P A T I O N  F O R  
J E F F R E Y S  F L U I D  

The Jeffreys model is, possibly one of the simplest 
constitutive equations which involve the "memory" or 
the history of the strain field and which still preserve 
objectivity*. The defining equation can be written for- 
mally so as to simplify the analysis; we assume (!"_ = 
s = o): 

r + A g r - 2  , + ~s ,  
'~t- p (s A 2 ~ )  (6) 

where, 9'/~y t is the corotational derivative and, 

3,A DA 
§  

9't Dt = = 

Here, D/Dt =OtDt + v. ~ is the Stokes derivative, and 
w = 1 /2(Vv-[V v] T) is known as the vorticity tensor. 

We can rewrite this equation by the use of an or- 
thogonal transformation that rotates with the fluid: 

r ,+X~D ~ Ds '  . =2,u ( s '+A ), 

where A' = Q A Q  + and Q = ~ Q  with Q(0) = 1, or, for- 
mally 

Q( t )=exp+  ! f t d s  e [ - w  (~) 

Here, the " +"  subscript indicates time ordering from 
left to right. In this equation, we consider ~ to be con- 
vected with the fluid point. It now becomes important 
to identify what is meant by convected coordinates 
and to define the notation we will be using. 

Define x to be the coordinate of a fluid particle at 
some previous time 0, and q to be the coordinate at 

*Called the Principle of Material Frame Indifference (see ref. 
5 and 6). 

Korean J. Ch. E. {Vol. 6, No. 2) 



128 M.S. JHON et al. 

x; at 0 q ~ /  
~ " q; air 

" ~  x(q,O)lo=~= 

Fig. I. 

the present time t (see Figure 1): 
More precisely, we can say that x(q, 0) is the trajec- 

tory of the particle. This puts us in a position to define 
Q unambiguously: 

2 Q (q, t) =exp+ t de ~- ~ (x (q, r $': 1 I. (8) 

Now, taking the Fourier transform of eq. (7), we can 
solve for r '  in Fourier space: 

. 1-A~ico , 
?" = 21~ i _ ~  ,i, i c ~ . (9) 

Here barred variables denote Fourier transformed 
ones. 

Even for a Newtonian turbulence, the Fourier pic- 
ture has shown great utility in the study of time depen- 
dent statistics, and the Fourier representation here is 
particularly simple. In any case, the real space r can 
be represented by a convolution; 

r : / 2 d O G  ( t - O ) s '  (O), (10) 

where G is the Fourier transform of G, and: 

G 2v 1 -  X'ic~ (11) 
1 -  ,~lico " 

Here, .v-=u/,o is the kinematic viscosity. 
The dissipation at some point in the fluid q is defin- 

ed as: 
D=- < ricksha> = < rkl (q, t )s~ (q, t) > .  (12) 

We can see from the particular model chosen (the 
corotational Jeffreys model) that the dissipation at a 
particular point will depend on its convected strain 
history. From eq. (10), we can rearrange the (unaver- 
aged dissipation term into 

D = . f ~ d O G ( t  O)s , ;  Ix (q, O), O~a,k(x(q,t),tJ, 

(13) 

and, taking the average, 

: / : d O G  (t 6')~.s,~x (q, 0), O~S,~ < D >  - ' 

~x (q, t), t ~> .  (141 

We will assume that the flow is stationary in t and 
in q, so that < D >  is independent of q, and we define: 
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~ ' ( t - 0 ) = < S , ~ [ x ( q ,  8),g)S,k[x (q , t ) , t . ]> .  4'15) 

From eqs. (14) and (15), 

= / 2 d t G  (t)X (t), (16' < D >  

and from Parseval's theorem: 

<D > = l r / ~  a w E *  ~o)Z (w).  1',17) 

Here, asterisk denotes the complex conjugate. 
Now it is clear that, since Z is an even function of 

w, we need consider only the even part of G*(Note that 
the imaginary part of G* is an odd function of co): 

Real part of G* (co) =2v  l + a  I)~lco) 2 (18~ 
14-(),,w) 2 

where a =  ~.2/..~1, and 1/3< a< 1. 
A log-log plot of G* and ~ might look like the sche- 

matic drawing thai appears in Figure 2. We not that Ca* 
has a relatively sharp step at w = 1 f). 1. If . r  dies off be- 
fore 1 I~. 1, then it seems that the dissipation will be un- 
changed from the Newtonian case. It may be assumed 
that, as the Reynolds number increases, the Z curve 
spreads out and will interact with CJ* to yield a non- 
Newtonian behavior. We cannot say as yet what the ef- 
fect on the E. spectrum will be, because the spectrum 
must rearrange itself in such a way as to preserve the 
total amount of dis:~ipation. All we can say is that the 
continuum view presented here exhibits a property 
similar to. the onset characteristic of the molecular 
analysis done in a previous paper[7]. 

A similar analysis can be done with the Oldroyd 
two-constant model[8], using codeformational deriva- 

Newtonian [ I Non-Newtonian 
Behaviour I Behaviour 

,b 
I~q 

2 v o 

ing) 

I/A~ 

Fig. 2. A plot of the strain correlation ,~ and the 
Green's function G* versus the frequency w. 
~- is the Fourier transform of ~. 
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lives instead of corotational ones as done above. How- 
ever, this would involve a nonorthogona] transfor- 
mation instead of the orthogonal corotating one used 
in :his section, and would greatly complicate the 
mathemalics. However, the integral formulation of this 
model is wholly unchanged from the molecular ana- 
lysis done previously[9]. Indeed, the Oldroyd two 
constant model is in every way the continuum mani- 
festation of the Hooken dumbbell molecular model[31. 

DISCUSSION 

What we have here is to follow the progress of a 
Jeffreys fluid particle in its "natural" coordinate sys- 
tem. Since we have little information about the staffs- 
tics of the strain-strain correlation |unction resulting 
from any kind of turbulence and in any kind of coor- 
dinate system, we might as welt choose this natural 
one. This is what is meant by exploiting our ignor- 
ance. We can be certain that, in any case, Z has a fn~ 
queney scale associated with it, over which it will 
change significantly and be substantially larger than 
zero (for a Newtonian fluid this scale would be som~ 
thing like the inverse of the Kolmogorov time scale). 
MoTeover, if the frequency scale of the fluid's memory 
function (1/2~1) is much longer than that of Z( low 
Reynolds numbers) the turbulence suffered by this Jef- 
freys fluid will be little changed from its Newtonian 
counterpart. On the other hand, if the reverse is tru~ 
that is, if the time scale of the fluid is much shorter 
than that of ,~(high Reynolds number)--the turbul- 
ence should behave as if it were a Newtonian fluid, but 
with a lower viscosity: va. 

Between these two extremes we cannot say any- 
thing precise. If the turbulence is isotropic and the 
strain fluctuations are assumed to be associated almost 
soMy with the dissipation, or if, in othel" words, the 
ener~'  production mechanism is indifferent to the 
non-Newtonian character of the fluid, then the amount 
o! e~ergy that must be dissipated will be unchanged 
from a_corresponding Newtonian turbulence. In this 
event, Z must rearrange itself on Figure 2 so as to pro- 
duce as much energy dissipation ( ~ D > )  as is being 
produced by the Reynolds stresses. How Z- might ac- 
complish this is open to debate. It should be empha- 
sized that we are considering only an isotropic turbul- 
ence in the above-turbulent shear flows might well be 
expected to manifest different results. It is a recognized 
experimental fact, however, that to large degree the 
convection and diffusion of energy from one point to 
an,Jther in a Newtonian turbulent shear tlow is negli- 
gible[2]. To the extent that this is also true for a Jef- 
freys fluid, we could say that at every point in the 
shear (inertial layer) one would expect that the Newto- 

nian energy production matches the dissipation 
(<~D>). This contrivance has been exploited in the 
past as an aid to the understanding of non-Newtonian 
shear turbulence[9,10] (e.g. drag reduction). 

It is clear that this corotational model reflects a his- 
tory of "natural" :rotations of the initial coordinate sys- 
tem. The fact that each of these coordinate systems are 
orthogonal ensures that no singularity will be incur- 
red. Codeformational models do not enjoy this luxury, 
and for many such models, even under perfectly deter- 
ministic flows (e.g. pure elongational), every invariant 
of the stress tensor will exhibit a singularity at some 
finite and physically reasonable strain rate. Lum- 
ley[11] showed that there is every reason to believe 
that the same is true for a stochastic deformation rate. 
This possibility has been supported further by our stu- 
dies. 

To those familiar with the previous work in this 
field, it may seem that we are in conflict with the well 
accepted view of the mechanism for drag reduction. 
Briefly, this view requires, for a variety of reasons, that 
the functional "viscosity" of the non-Newtonian liquid 
increases with "increasing" Reynolds number. 'We, of 
course, have predicted quite the opposite and. we be- 
lieve, this is largely due to the type constitutive rela- 
tion considered here. Corotational models, when view- 
ed on the microscopic scale, do not allow for a great 
deal of elasticity - a characteristic particularly impor- 
tant in polymeric solutions. In fact, codeformationat 
models have been shown to increase the amount of 
energy dissipation (and therefore, by a crude analogy, 
the functional "viscosity") at high Reynolds num- 
bers[7]. So it seems that liquids which are better by a 
Jeffreys model may behave in a fundamentally differ- 
ent manner than polymeric systems with a large 
amount of elasticity. 

So why not develop the same treatment given here 
for a codeformational fluid? Codeformational models 
(although linear in the stress tensor) are nonlinear in 
strain, and this single fact renders the problem non- 
linear and stochastic, with philosophical as well as ma- 
thematical difficulties. In addition, the inherent sin- 
gularity mentioned earlier may cause such a model to 
be an unphysical representation of real non-New- 
tonian fluids, especially if the strain fluctuations en- 
countered due to the turbulence are expected to be 
large. Therefore, the corotational models are probably 
the only memory involving constitutive relation that 
can be applied to this type of continuum n~echanicat 
treatment. One must proceed to a nonlinear molecular 
theory in order Io do away with this problem[9,12]. 

This paper then, has dealt with the most realistic 
(memory involving) fluid that does not suffer from 
these drawbacks. The major advantage to this con- 
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tinuum view over the molecular view is that a "white" 
frequency spectrum assumption for X(high Reynolds 
number limit) is not required and the frequency de- 
pendent properties of the resulting non-Newtonian tur- 
bulence can therefore be studied more realistically. To 
some extent we have compromised a little of the rea- 
lism of the constitutive relations in order to obtain a 
clearer idea of what happens to the turbulence, and in 
that sense this work is we developed[I,7] somewhat 
complementary to the previous molecular theories. 

N O M E N C L A T U R E  

D : 

G : 

p : 
P : 
q : 

~(sk,) : 
s(s~,)  : 

s8 : 

S o : 
S' : 
t : 

T(T,O : 
U i : 

u,  : 
X : 

Re 

D 
Dt 

~> 

dissipation 
relaxation modulus 
Fourier transform of G 
pressure fluctuation 
average pressure 
coordinate at the present time t 
fluctuating rate of strain tensor 
average rate of strain tensor 
strain rate fluctuation 
mean strain rate 
Fourier transform of S' 
present time 
average deviatoric stress 
velocity fluctuation 
mean flow 
coordinate of a fluid particle at some previous 
time 0 
Reynolds number 

corotational derivative 

Stokes derivative 

average quantity 

G r e e k  L e t t e r s  

a : A2/X1 
P : fluid, density 
X~ : relaxation time 
X 2 : retardation time 
v : kinematic viscosity (/~lp) 

,t./ : 

0 
: 

7 '  

o3 

fluid viscosity 
previous time 
Fourier transform of X 
fluctualing deviatoric stress 
Fourier transform of -r' 
frequency 
vorticity tensor 

S u p e r s c r i p t s  

§ : time ordering from left to right 
* �9 complex conjugate 
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